Preliminary communication

INSERTION REACTIONS OF A TUNGSTEN HYDRIDE COMPLEX

PETER KUNDEL and HEINZ BERKE*

Fakultät für Chemie, Universität Konstanz, Postfach 5560, 7750 Konstanz (F.R.G.)

(Received July 10th, 1986)

Summary

The W-H bond of a dicarbonylhydridonitrosylbis(triisopropylphosphite)tungsten complex is sufficiently weak to allow insertion of electron-poor acetylenes such as propiolic aldehyde and methylpropiolate, to give vinyltungsten compounds or insertion of CO₂ to give a formate species.

In general octahedral transition metal hydride complexes exhibit only a low propensity towards insertion of small molecules because of the strength of the M-H bond [1]. However, it was stated by Bursten et al. [2] that pseudooctahedral nitrosyl substituted hydride compounds contain weak M-H bonds, and we recently synthesized a new class of nitrosyl substituted tungsten hydride complexes which from the IR frequency of the W-H vibration, we judged to contain a weak W-H bond which might give rise to enhanced reactivity [3]. In order to confirm this the dicarbonylbis(triisopropylphosphite)nitrosyltungsten hydride, (I), was treated at room temperature with the activated acetylene compounds propiolic aldehyde and methylpropiolate, and found to give cis-vinyltungsten derivatives (II and III) [4] (see eq. 1).

The assignment of the structures of II and III is based on IR and NMR data. The $(OC)_2(ON)[P(O-i-pr)_3]_2W$ fragments in II and III give IR spectra in the $\nu(C=O)$ and $\nu(N=O)$ regions and NMR spectra for the phosphite ligands which are similar to those of I [5].

The olefinic hydrogens in II and III are in a cis disposition as shown by the low J(H-H) coupling constants. This indicates that trans-addition of the W-H bond across the acetylenic double bond has occurred, in much the same way as in the hydrostannation of alkynes [6]. This resemblance to hydrostannation suggests to us that these insertions into W-H bonds probably follow a radical pathway.

The high reactivity of the W-H bond in I is confirmed by the reaction with CO_2 [7,8]; treatment of I with liquid CO_2 (70 bar) at room temperature gave the η^1 -formate complex IV [9]. As for II and III, the composition and configuration of the W(CO)₂(NO)[P(O-i-pr)₃]₂ fragment in IV can be unambiguously deduced from

the IR, NMR and mass spectroscopic data, and the presence of a formate ligand is confirmed by characteristic ¹H and ¹³C NMR resonances [10]. I also reacts with a variety of organic carbonyl compounds, and further studies are currently underway in our laboratory.

Acknowledgements

The authors are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (West Germany) for financial support.

References

- 1 H.D. Kaesz and B. Saillant, Chem. Rev., 72 (1972) 231.
- 2 B.E. Bursten and M.G. Gatter, J. Am. Chem. Soc., 106 (1984) 2554.
- 3 H. Berke and P. Kundel, Z. Naturforsch. B, 41 (1986) 527.
- 4 II and III were prepared by treating pentane solutions of I at room temperature with a slight excess of the appropriate acetylene derivative. Yellow crystals were obtained upon cooling the solutions to -70°C.
- 5 Selected analytical data:
 - II: IR ν (C=O), ν (N=O) (n-pentane): 1958s, 1627m cm⁻¹. ¹H NMR (CD₃COCD₃): δ 9.62 ppm (t, J(P-H) 1.1 Hz, CHO), 6.88 ppm (t, d, J(P-H) 3.4 Hz, J(H-H) 1.3 Hz, W-CH=CH), 6.85 ppm (t, d, J(P-H) 2.4 Hz, J(H-H) 1.3 Hz, W-CH=CH), 4.68-4,55 ppm (m, P-O-CH), 1.29 ppm (d, J(H-H) 6.1 Hz, CH₃). ¹³C{ ¹H}NMR (C₆D₆): 211.1 ppm (t, J(P-C) 10.3 Hz, CO), 204.31 ppm (s, CHO), 178.81 ppm (t, J(P-C) 16.2 Hz, W-C=C-), 151.07 ppm (t, J(P-C) 5.8 Hz, W-C=C-), 69.65 ppm (s, P-O-C), 24.22 ppm (s, CH₃); ³¹P{ ¹H}NMR (C₆D₆): 127.64 ppm (s). MS: m/e = 741 [M]⁺, m/e = 713 [M CO]⁺, m/e = 685 [M 2CO]⁺, m/e = 655 [M 2CO, CH₂O]⁺, m/e = 630 [M 2CO, C₃H₃O]⁺.

- III: IR ν (C=O), ν (N=O) (n-pentane): 1960s, 1700w, 1626m cm⁻¹. ¹H NMR (C_6D_6): δ 7.09 ppm (t, d, J(P-H) 3.23 Hz, J(H-H) 5 Hz, W-CH=CH), 6.27 ppm (t, d, J(P-H) 2.9 Hz, J(H-H) 5 Hz, W-CH=CH), 4.98-4.61 ppm (m, P-OCH), 3.58 ppm (s, COOCH₃), 1.28 ppm (d, J(H-H) 6.1 Hz, CH₃). ¹³C{¹H} NMR (C_6D_6): 210.61 ppm (t, J(P-C) 10.3 Hz, CO), 177.72 ppm (s, COOR), 167.12 ppm (t, J(P-C) 15.5 Hz, W-C=C), 138.71 ppm (t, J(P-C) 5.9 Hz, W-C=C), 69.59 ppm (s, P-O-C), 50.44 ppm (s, OCH₃) 24.11 ppm (s, CH₃). ³¹P{¹H}NMR (C_6D_6): δ 129.08 ppm (s). MS: m/e = 771 [M]⁺, 743 [M CO]⁺, 715 [M 2CO]⁺, 684 [M 2CO, OCH₃]⁺, 630 [M 2CO, C₄O₂H₅]⁺.
 - Satisfactory elemental analyses were obtained.
- 6 A.J. Leusink and H.A. Budding, J. Organomet. Chem., 11 (1968) 533; H.G. Kuivila, Synthesis, (1970) 499.
- 7 D.J. Darensbourg and R.A. Kudaroski, Adv. Organomet. Chem., 22 (1983) 129; I.S. Kolomnikov and M.Kh. Grigoryan, Russ. Chem. Rev., 47 (1978) 334; S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 107 (1985) 6278.
- 8 See also the reaction of W(CO)₂(NO)[PPh₃]₂H with C₃O₂, G.L. Hillhouse, J. Am. Chem. Soc., 107 (1985) 7772.
- 9 I was sealed with dry ice in a laboratory autoclave. After two days at room temperature (70 bar CO₂ pressure) the pressure was released and IV was obtained as yellow crystals by recrystallization from pentane.
- 10 Selected analytical data:
 - IV: IR ν (C=O, ν (N=O) (n-pentane): 2052w, 1961s, 1629s cm⁻¹. ¹H NMR (C₆D₆): δ 8.30 ppm (t, J(P-H) 1.5 Hz, OCOH), 4.5-4.6 ppm (m, P-O-CH), 1.25 ppm (d, J(H-H) 6.1 Hz, CH₃). ¹³C{¹H}NMR (C₆D₆): δ 209.16 ppm (t, J(P-C) 10.3 Hz, CO), 166.43 ppm (s, OCO), 69.98 ppm (s, P-O-C), 24.19 ppm (s, CH₃). MS: $m/e = 703 [M \text{CO}]^+$, 675 $[M 2\text{CO}]^+$, 644 $[M \text{CO}, -\text{OC}_3\text{H}_7]^+$, 616 $[M 2\text{CO}, -\text{OC}_3\text{H}_7]^+$, 573 $[M 2\text{CO}, -\text{OC}_3\text{H}_7, -\text{C}_3\text{H}_7]^+$, 485 $[M 2\text{CO}, -\text{OC}_3\text{H}_7, -\text{CO}_2\text{H}]^+$.

Satisfactory elemental analyses were obtained.