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Summary

The W-H bond of a dicarbonylhydridonitrosylbis(triisopropylphosphite)tungsten
complex is sufficiently weak to allow insertion of electron-poor acetylenes such as
propiolic aldehyde and methylpropiolate, to give vinyltungsten compounds or
insertion of CO, to give a formate species.

In general octahedral transition metal hydride complexes exhibit only a low
propensity towards insertion of small molecules because of the strength of the M—H
bond [1]. However, it was stated by Bursten et al. [2] that pseudooctahedral nitrosyl
substituted hydride compounds contain weak M—~H bonds, and we recently synthe-
sized a new class of nitrosyl substituted tungsten hydride complexes which from the
IR frequency of the W—H vibration, we judged to contain a weak W-H bond which
might give rise to enhanced reactivity [3]. In order to confirm this the
dicarbonylbis(triisopropylphosphite)nitrosyltungsten hydride, (I), was treated at
room temperature with the activated acetylene compounds propiolic aldehyde and
methylpropiolate, and found to give cis-vinyltungsten derivatives (II and III) [4] (see
eq. 1).

The assignment of the structures of II and III is based on IR and NMR data. The
(0C),(ON)[P(O-i-pr);],W fragments in II and III give IR spectra in the »(C=0)
and »(N=O) regions and NMR spectra for the phosphite ligands which are similar
to those of I [5].

The olefinic hydrogens in II and III are in a cis disposition as shown by the low
J(H-H) coupling constants. This indicates that trans-addition of the W-H bond
across the acetylenic double bond has occurred, in much the same way as in the
hydrostannation of alkynes [6]. This resemblance to hydrostannation suggests to us
that these insertions into W-H bonds probably follow a radical pathway.

The high reactivity of the W—H bond in I is confirmed by the reaction with CO,
[7,8]; treatment of I with liquid CO, (70 bar) at room temperature gave the
n'-formate complex IV [9). As for II and III, the composition and configuration of
the W(CO),(NO)[P(O-i-pr),;], fragment in IV can be unambiguously deduced from
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the IR, NMR and mass spectroscopic data, and the presence of a formate ligand is
confirmed by characteristic 'H and '*C NMR resonances [10]. I also reacts with a
variety of organic carbonyl compounds, and further studies are currently underway
in our laboratory.
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